Zenler Player
Your course is loading. Hang tight.
Calculus, Differential Equations and Linear Algebra - 22MATC11
Back to curriculum
0% Complete
0% Complete
L1 - Basics: Trigonometry
L2 - Basics: Natural Logarithm
L3 - Basics: Properties of Logarithm
L4 - Basics: Derivative of Logarithm
L5 - Basics: Logarithmic Differentiation
L6 - Coordinate Systems - Cartesian vs Polar
L7 - Intro to Polar Curves
L8 - Polar Curves vs Cartesian Curves
L9 - Angle betn Radius Vector and Tangent - Derivation
L10 - Angle betn Radius Vector and Tangent Q1,2,3
L11 - Angle betn 2 curves
L12 - Angle betn 2 curves Q1
L13 - Angle betn 2 curves MP1 - Q1b
L14 - Angle betn 2 curves MP2 - Q1b
L15 - Angle betn 2 curves MP2 - Q2a
L16 - Pedal Equation of Polar Curve
L17 - Pedal Equation Q1
L18 - Pedal Equation MP2 - Q2b
L19 - Pedal Equation MP1 - Q2b
L20 - Pedal Equation Q2
L21 - Pedal Equation MP1 - Q2a
L22 - Radius of Curvature - Formula
L23 - Radius of Curvature Q1
L24 - Radius of Curvature Q2
L25 - Radius of Curvature MP1 - Q2c
L26 - Radius of Curvature MP2 - Q2c
L27 - Radius of Curvature (Polar) - Q3
L28 - Radius of Curvature (Polar) MP1 Q1c
L29 - Radius of Curvature (Polar) MP2 Q1c
L1 - Trigonometry for Maclaurin's series
L2 - Differentiation for Maclaurin-s series
L3 - Pre-requisites for Maclaurin's series
L4 - Maclaurin's series - Intro
3 Solved Numericals
L6 - What are Indeterminate Forms
L7 - How to solve 0/0 form (L-Hospital's rule)
L8 - How to solve (0 X ∞) form
L9 - How to solve 1^∞ form
1 Solved Numerical
L1 - Basics: Partial Differentiation
L2 - Exact Differential Equation
L3 - Exact DE Q1,2
L4 - Exact DE Q3,4,5
L5 - Convert to Exact DE
L6 - Convert to Exact DE Q1
L7 - Convert to Exact DE Q2,3
L8 - Convert to Exact DE MP1 Q6a
L9 - Convert to Exact DE MP2 Q6a
L10 - Basics: Algebra
L11 - Solve for p
L12 - Solve for p MP1 Q5c
L13 - Solve for p MP2 Q5c
L14 - Newton's Law of Cooling
L15 - NLoC Q1,2
L16 - NLoC MP1 Q6b
L17 - NLoC MP2 Q5b
L18 - Basics: Integrals of trig functions
L19 - Bernoulli 1st order equation
L20 - Bernoulli equation Q1,2,3
L21 - Bernoulli equation MP2 Q5a
L22 - Bernoulli equation MP1 Q5a
L23 - Orthogonal trajectories
L24 - Orthogonal trajectories Q1,2
L25 - Orthogonal trajectories MP1 Q5b
L26 - Orthogonal trajectories MP2 Q6b
L27 - Clairaut's equation MP2 Q6c
L28 - Convert to Clairaut's equation MP1 Q6c
L6 - Particular Soln - Variation of Parameters
MP1 Q7c - Numerical on VoP
MP2 Q7c - Numerical on VoP
L1 - Matrix Row Operations
L2 - Rank of Matrix Q1
L3 - Rank of Matrix Q2
L4 - Rank of Matrix MP1 - Q9a
L5 - Rank of Matrix MP1 - Q10a
L6 - Rank of Matrix MP2 - Q9a
L7 - Test for Consistency and Solvability
L8 - Test for Consistency and Solve MP2 - Q10a
L9 - Find λ and μ MP1 - Q10b
L10 - Find λ and μ Q1
L11 - Gauss Elimination Method MP2 - Q9b
L12 - Gauss Elimination Method Q1
L13 - Gauss Elimination Method Q2
L14 - Gauss-Jordan Method Q1
L15 - Gauss-Jordan Method Q2
L16 - Gauss-Jordan Method MP1 - Q9b
L17 - Gauss-Jordan Method MP2 - Q10b
L18 - Gauss-Seidel Method MP1 - Q10c
L19 - Gauss-Seidel Method MP2 - Q9c
L20 - Gauss-Seidel Mehod Q1
L21 - Eigenvalues and Eigenvectors
L22 - Rayleigh's Power Method MP1 - Q9c
L23 - Rayleigh's Power Method MP2 - Q10c
L24 - Rayleigh's Power Method Q1
M01 - Calculus
L1 - Basics: Trigonometry
L2 - Basics: Natural Logarithm
L3 - Basics: Properties of Logarithm
L4 - Basics: Derivative of Logarithm
L5 - Basics: Logarithmic Differentiation
L6 - Coordinate Systems - Cartesian vs Polar
Preview
L7 - Intro to Polar Curves
Preview
L8 - Polar Curves vs Cartesian Curves
Preview
L9 - Angle betn Radius Vector and Tangent - Derivation
Preview
L10 - Angle betn Radius Vector and Tangent Q1,2,3
L11 - Angle betn 2 curves
L12 - Angle betn 2 curves Q1
L13 - Angle betn 2 curves MP1 - Q1b
Preview
L14 - Angle betn 2 curves MP2 - Q1b
L15 - Angle betn 2 curves MP2 - Q2a
L16 - Pedal Equation of Polar Curve
L17 - Pedal Equation Q1
L18 - Pedal Equation MP2 - Q2b
L19 - Pedal Equation MP1 - Q2b
L20 - Pedal Equation Q2
L21 - Pedal Equation MP1 - Q2a
L22 - Radius of Curvature - Formula
L23 - Radius of Curvature Q1
L24 - Radius of Curvature Q2
L25 - Radius of Curvature MP1 - Q2c
L26 - Radius of Curvature MP2 - Q2c
L27 - Radius of Curvature (Polar) - Q3
L28 - Radius of Curvature (Polar) MP1 Q1c
Preview
L29 - Radius of Curvature (Polar) MP2 Q1c
M02 - Series Expansion and Multivariable Calculus
L1 - Trigonometry for Maclaurin's series
L2 - Differentiation for Maclaurin-s series
L3 - Pre-requisites for Maclaurin's series
L4 - Maclaurin's series - Intro
3 Solved Numericals
L6 - What are Indeterminate Forms
L7 - How to solve 0/0 form (L-Hospital's rule)
L8 - How to solve (0 X ∞) form
L9 - How to solve 1^∞ form
1 Solved Numerical
M03 - ODEs of First Order
L1 - Basics: Partial Differentiation
L2 - Exact Differential Equation
L3 - Exact DE Q1,2
L4 - Exact DE Q3,4,5
L5 - Convert to Exact DE
L6 - Convert to Exact DE Q1
L7 - Convert to Exact DE Q2,3
L8 - Convert to Exact DE MP1 Q6a
L9 - Convert to Exact DE MP2 Q6a
L10 - Basics: Algebra
L11 - Solve for p
L12 - Solve for p MP1 Q5c
L13 - Solve for p MP2 Q5c
L14 - Newton's Law of Cooling
L15 - NLoC Q1,2
L16 - NLoC MP1 Q6b
L17 - NLoC MP2 Q5b
L18 - Basics: Integrals of trig functions
L19 - Bernoulli 1st order equation
L20 - Bernoulli equation Q1,2,3
L21 - Bernoulli equation MP2 Q5a
L22 - Bernoulli equation MP1 Q5a
L23 - Orthogonal trajectories
L24 - Orthogonal trajectories Q1,2
L25 - Orthogonal trajectories MP1 Q5b
L26 - Orthogonal trajectories MP2 Q6b
L27 - Clairaut's equation MP2 Q6c
L28 - Convert to Clairaut's equation MP1 Q6c
M04 - ODEs of Higher Order
L6 - Particular Soln - Variation of Parameters
MP1 Q7c - Numerical on VoP
MP2 Q7c - Numerical on VoP
M05 - Linear Algebra
L1 - Matrix Row Operations
Preview
L2 - Rank of Matrix Q1
Preview
L3 - Rank of Matrix Q2
Preview
L4 - Rank of Matrix MP1 - Q9a
Preview
L5 - Rank of Matrix MP1 - Q10a
Preview
L6 - Rank of Matrix MP2 - Q9a
Preview
L7 - Test for Consistency and Solvability
Preview
L8 - Test for Consistency and Solve MP2 - Q10a
Preview
L9 - Find λ and μ MP1 - Q10b
Preview
L10 - Find λ and μ Q1
Preview
L11 - Gauss Elimination Method MP2 - Q9b
L12 - Gauss Elimination Method Q1
Preview
L13 - Gauss Elimination Method Q2
Preview
L14 - Gauss-Jordan Method Q1
Preview
L15 - Gauss-Jordan Method Q2
L16 - Gauss-Jordan Method MP1 - Q9b
L17 - Gauss-Jordan Method MP2 - Q10b
L18 - Gauss-Seidel Method MP1 - Q10c
L19 - Gauss-Seidel Method MP2 - Q9c
L20 - Gauss-Seidel Mehod Q1
Preview
L21 - Eigenvalues and Eigenvectors
L22 - Rayleigh's Power Method MP1 - Q9c
Preview
L23 - Rayleigh's Power Method MP2 - Q10c
L24 - Rayleigh's Power Method Q1
Preview
×
This is an unpublished lesson. This lesson will not be shown for students unless you set it as Public.
Back to Dashboard
No contents are available in this lesson!
No lessons available !
Back to Dashboard
Lesson contents locked
Enroll to unlock this lesson.
Enroll to unlock
Next Lesson